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Abstract. Nowadays, and more than ever before, we live on a computer-
1zed world. Computers are used every day, all day, all around the world.
All of people’s activities now rely on PCs and, therefore, rely on the
perfect execution of the applications running in these machines. As one
can see, any malfunction of these machines may cause a huge problem
in today’s globalized world economy and safety.

This is a first approach to trying to understand such malfunctions (i-e.,
anomalies) that represent such a threat. The interaction of applications
in the PCs are recorded and analyzed applying machine learning tech-
niques, looking for possible combinations of applications that may lead
to anomalies.

By applying simulation and machine learning techniques, some combina-
tions of applications were found that, eventually, may lead to an anoma-
lous event. Moreover, these combinations were clustered to see how sim-
ilar they were, and concluding that there was a kind of defined set of
combinations that may cause anomalies. Though, a simple approach is
presented in this paper, the obtained results might be then used to im-
prove the performance and profiling of everyday PCs. In this paper, all
these findings are presented followed by the future work and conclusions
related to this work.

1 Introduction

Computers have entered almost every arena of human society nowadays. They
operate in our homes, our workplaces, and our schools. They come in so many
shapes and sizes that it is sometimes difficult to recognize them: while laptop
and desktop computers are commonplace, computers can also be found in home
clectronics, automobiles, airplanes, automatic teller machines (ATMs), security
systems, and many other devices and situations. Many of the world’s societies
depend heavily on computers in the operation of their transportation systems,
commerce, utilitics, law enforcement, governance, and more [1].

From the above facts, it is casy to sec that pcople’s everyday activities rely
not only on the applications that run on the PCs, but also on the correct and
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flawless exccution and interaction of these programs. Failing to appreciate the
importance of the later may causc scrious problems. Just to show this, consider
the power grid’s computers that keep power flowing in 15 USA statcs and onc
Canadian province. Morc than 50 million people were left without clectricity
on August 14, 2003, thanks in part to a software bug [2]. Morcover, consider
the 13 Root Domain Name servers, two of which are operated by VeriSign, that
each day reccive 25 billion requests for Web addresses. This system is a frequent
target of computer malcontents, and a February 6 attack causcd three of the
servers to drop 90% of their queries during a 12-hour period [2].

All thesc reasons, and many more [3,4], have created the nced to develop
tools and techniques to deal with these anomalies. Consequently, this has given
birth to Anomaly Detection which can be described as an alarm for strange
system bchavior [5]. The concept stems from a paper fundamental to the ficld
of sccurity - “An Intrusion Detection Model”, by Dorothy Denning [6]. In it, she
describes building an activity profile of normal usage over an interval of time.
Once in place, the profile is compared against real time cvents. Anything that
deviates from the baseline, or the norm, is logged as anomalous.

Currently, there are many approaches that deal with anomaly dctection.
However, most of them look for anomalies analyzing network traffic or provid-
ing algorithms to detect intruders, without considering that anomalics arc also
present in just one PC (i.c., a home desktop). Some examples of current research
arc given by [7], [8] and [9]. In this paper, a first approach to detecting anomalics
when using a computer is presented, looking at the interactions among typical
applications. The main objective is to find common rules that might be usecful to
prevent the presence of anomalies. It is not possible that, given today’s computer
power, people are faced, occasionally, with a frozen application and/or total usc
of PC power by just one application.

In the following sections of this paper, the existing difference between this
work and other publications is presented, the proposed approach to this problem
is explained and detailed. Next, the implementation of this rescarch is described,
followed by the discussion and analysis of the obtained results. Finally, the con-
clusions of this current rescarch are presented along with the future work needed
to achicve the next stages of this rescarch. :

2 Related Work

Most of anomaly detection current rescarch is devoted to the study of nctwork
traffic analysis and intrusion detection systems, profile generation and statistics
and spccification-based anomaly detection [6,7,8,9]. However, the present work is
different. in the sense that it attempts to study the complex interactions among
applications that usually run in any PC. It is believed that before trying to study
complex interaction among computers (c.g., distributed systems), it is important
to understand what might go wrong or what might causc a PC and its programs
to trigger a problem.
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Anyway, there arc some projects related to collecting data associated to the
applications that run on a computer. On this, one of the latest projects is the
Flight Data Recorder (FDR) [10] which logs all persistent state interactions of a
PC. They proposc a new way to store these logs and to access such information.
However, thc main objective of the data they provide is to improve not only
how large systems arc managed, but also how to prevent attacks (which they
refer to as anomalies). As such, the present work is different since it attempts,
first, to discover common application intcractions that may lead to an anomalous
cvent; and, sccond, to study how frequent such combinations appcar when using
a computer. i

Jude Shavlik and Mark Shavlik [11] proposed the use of machine lecarning
techniques to study combinations in PCs. Nevertheless, and cven though the
idea behind is the same. the way it is used and the goals arc different. Jude and
Mark Shavlik aim at finding intruders in the system whereas the present paper
looks for the interactions of applications that may represent an anomaly.

This is an approach to studying the combinations of applications and the
possible conscquences that they may represent in the performance of any PC.
The next section presents the steps taken to tackle this issue.

3 Approach

The followed approach is rather simple to cxplain. First, it is nccessary to gather
data, always the hardest thing to do. Each time step, all the processes that rep-
resent some PC load (not memory allocation) are recorded; these applications
arc usually those in use by the user. The applications in memory are not con-
sidered since they do not represent PC load, unless they are in use and not only
loaded. Next, all this data is stored in a database for further analysis. In this
analysis, rules that trigger anomalics are discovered and clustered cmploying
machine lcarning techniques. In this case, three simple algorithms were tricd
out: k-means ! [12], filtered clustering 2 [13] and farthest first 3 [14,15]. This
approach is depicted in Figure 1.

However, there is still a problem that has to be overcome; there is a lack of
available data to conduct our analysis. Although, getting data from a PC should
be casy, there arc some barriers that prevent doing so, being privacy issues the
most important one. Almost no one is willing to let a program record all the
programs a person makes use of [16]. This situation was solved simulating a PC
and the programs running on it; however, there was the need of some statistics
in order to get close-to-real-life results for this paper, more precisely:

— the most popular applications used by people, and

! The k-means algorithm is an algorithm to cluster objects based on attributes into k
partitions.

% An algorithm that filters possible noise and unwanted attributes.

% A hierarchical clustering algorithm based on a measure of dissimilarity between
observations.
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Fig. 1. Proposed approach to find anomalies.

— the percentage cach of these applications represent as PC load

These data was provided by MugShot [17] where a complete list of most used
applications plus their statistics and parcnt groups were provided. All thesc help
simulate a PC running the most common applications and generate the required

data to conduct the analysis.
Having overcome the lack of meaningful data, the next step is the implemen-

tation of this approach. This is cxplained and detailed in the next section of this
paper.

4 Implementation

In this section the implementation of the proposed approach is presented. There
are three aspects of the implementation that will be explained here: the simula-
tion, the storage, and the machine learning tools applications.

4.1 Getting Data through Simulation

The simulation was conducted using Turtlekit [18], a MadKit plugin for multi-
agent simulation. In this case, an abstract class was coded in Java, and all the
applications, plus its characteristics, inherited from it. In the proposed simula-
tion, each application is represented by an agent, instantiated with a different
color, different life time, different PC load, and, for the purposes of the simula-
tion, different position in the Turtlekit grid.

The different applications are instantiated at execution time using the statis-
tics provided by MugShot web site [17]. Each application is associated with a
probability, the applications that arc used the most have a higher probability
of being instantiated, whercas those that are seldom used have a smaller prob-
ability. Every new application that is placed in the Turtlekit world has its own
characteristics (c.g., color, life time, etc.) This probability-instantiation approach
is implemented using the genetic algorithm roulette wheel selection [19].

Figure 2 shows a moment of the simulation process that was conducted in
order to get the data needed. Each little square represents a different application
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Fig. 2. An example of the simulation process.

instance with a particular life time, so cach application is in usec for a period of
time. Every time step a new application is instantiated and others die. Here is
when the applications arc recorded and stored for the next step and to do this
another agent was coded. This agent looks at the grid and keeps a record of
the agents alive at cach stage of the simulation. This agent also keeps a sum of
the percentages cach in-use application represents. As long as this total sum is
less than 100%, the possibility of having a possible anomaly is low. This is so
under the assumption that most of the time computers do work well, otherwise,
people would not make use of them 4. On the other hand, once this total addition
gets to 100%. then, a flag of possible anomaly is associated to the list of alive
applications. The assumption that making use 100% of CPU resources could be a
possible anomaly is not far from the truth. Whenever all CPU resourccs arc being
used there is a period of time when the PC simply does not respond. However, as
the title suggests, this approach is a very first step towards really understanding
what may cause an anomaly. There are other factors to be considered such
memory paging, device usage, ctc., which arc not considered for the time being.

The process described above is conducted cach step time, and the results are
stored for further analysis. This storing process is described in the next section.

4.2 Storage

In this part of the project the applications in used are stored. These are stored
as a word vector and a time marker. In other words, for each time ¢; there will be
a vector V; that contains all the applications [appi, apph,- - - , appi.]. The size of
the vector is not constant since each time step there might be a different number
of applications in use.

This last fact was the main reason why each group of applications was stored
as a word vector. If thesc lists of applications had been stored as a key followed
by the applications as possible attributes, an sparsed matrix would have been
the result originating more problems than providing solutions.

4 More on this assumption is discussed in the conclusions
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4.3 Machine Learning Techniques Application

In this stage, machine learning techniques arc applied to the data collected. It
is important to point out that thc data collected was quite huge. There were 10
runs of the simulation, where cach run took 5 hours. The resulting size of the

data scts after cach simulation run was around 2GB.

It is clear to sec that a very versatile tool was necded to conduct this stage of
the rescarch. As such, “Yet Another Learning Environment” (YALE) was uscd
[20]. This platform provides a complete set of tools to conduct machinc lecarning
related experiments and analysis. Morcover, it is completely coded in Java which
makes it casy to combine with other Java-based APIs; in this case MadKit.

Three machine learning algorithms were applied to the data [12,13] and
[14,15]. All this algorithms considered the frequency of each single term present
in cach vector. In other words, thesc algorithms look for how many times an
application app; happens in cach vector Vi. For the k-mcans algorithm [12], a
random number sced of 10 was uscd and for farthest first [14,15], the random
number sced was 1. The results gotten after using these techniques arc presented

in the next scction.

5 Obtained Results and Discussion

All the data gathered after running the experiments was studied using machinc
learning algorithms. These results are presented in the next paragraphs. It is
worth pointing out that in the following results, the proper names of the ap-
plications have not been included, and they will be referenced using their main
use.

5.1 Mined Rules

Using the algorithms alrcady mentioned, a sct of rules was mined trying to
characterize what applications may trigger a possible anomaly. In this casc, only
those lists of applications that were flagged as possible anomalies were studicd.

The results gotten arc shown in Table 1. It is interesting to sce that the
presentations utility is present in two of the four rules. Also, it can be scen that
the cmail manager is also present in two of the mined rules. Also something quite
intcresting to sce is that just the music player application might be cnough to
causc an anomaly.

Table 1. Mined rules that may trigger a possible anomaly.

Rulel:|presentations utility|and| email manager
Rule2:| word processor |and|presentations utility
Rule3:| email manager |and| document viewer
Ruled: music player

Total Number of Mined Rules: | & ol
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Table 1 tells us that there are certain applications, and a combination of
these, could eventually lead to an anomaly when using a PC. However, it is also
important to point out that this results were gotten using a simulation process.

5.2 Formed Clusters

The word vectors were clustered according to how similar they arc. In other
words, how many applications they sharc and how many they do not. The three
clustering algorithms that were used show quite similar results. Neverthcless, in
one of them the number of members of one cluster is different from the number of

members in others. The number of clusters in three algorithms docs not change,
though.
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Fig. 3. Clusters formed using K-means.

Figures 3 and 4 show the obtained clusters using k-means and filtered clus-
tering respectively. It is intercsting to see that both have the same pattern and
distribution on the grid.

On the other hand, Figure 5 shows the clusters using the farthest first algo-
rithm. In this casc there are two vector words that arc similar to those shown
in Figures 3 and 4. All these clusters just confirm that the applications in those
word vectors might, indeed, lead to an anomaly when using a PC.

Furthermore, it is also important to show how similar this word vectors might
be. In order to do so, Andrew’s Gurves ® were plotted using the data provided
thanks to the implementation of [21]. Figures 6, 7 and 8 show such plots.

As cxpected, Figures 6 and 7 show almost similar behavior and, they also
show how coherent the clustering is. Figure 8 is different from the other two;
however, the coherence that this graph shows is also good validating the clusters.

® Andrew’s Curves are a useful tool for separating multivariate observation into groups
that can not easily be distinguished in a tabular presentation, where curves of similar
observations generally overlap, while dissimilar observations fall into different groups.
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All these results show that the rules found might be warnings that indicate
possible anomalies and that the scts of applications that potentially lead to
anomalous events do share some common characteristics. In the next scction,
the conclusions of the present work are reported along with the future work

needed to validate these results.

6 Conclusions and Future Work

The present rescarch has obtained some results that, although some of them

were expected, others were not at all. Such conclusions are listed below.

1. The number of word vectors that may lead to some anomalous cvents is
rather small when compared to those that do not. This was cxpected since
computers, most of the time, do not show anomalics. Thus, pcople rely on

PCs to do their work.
2. Among all generated combinations of applications only 13 word vectors

caused an anomaly flag.

3. The applications that could potentially lcad to an anomaly is also very small.
The rules that were built show that only 5 of all 21 most common applications
represent some threat.

4. In general, the possible combination of applications that may lcad to an
anomaly is the same across all seen flagged word vectors. This was shown

when they clustered in a rather tight way.

Nevertheless, there are still some things left to be done, and the most im-
portant one is to go beyond the simulation and actually get real data. There
arc some approaches to such task [10]; however, they arc not totally specific to
the situation under studied here. Once this is done there arc two other things
that have to be done. First, compare the results gotten with real data versus
simulation; and, sccond, find false positives and falsc negatives crossreferencing
simulation and real data experiments.

Finally, it is necessary to use all this new knowledge to warn of possible
anomalies when using a PC. One way could be to implement an entity that
monitors the applications in use, building a profile per each user.

References

1. Nyhoff, J.L., VanderLeest, S.H.: Chapter 1, Lesson 1: Computers Are Everywhere.
www.calvin.edu/academic/rit/webBook/chapter1/lessonl/ (2005)
2. Hesseldahl, A.: Our Fragile Computerized World.

(2007)
3. Reeves, G.E., Neilson, T.C.: The Mars Rover Spirit FLASH anomaly. In: Pro-

ceedings of the Aerospace Conference, [IEEE Computer Society Press (2005)
4. Associated-Press: Engineers labor to fix space computers.
www.msnbc.msn.com/id/19224133 (2007)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21

A First Approach to Understanding the Anomalies on My PC 203

- Tanase, M.: One of these things is not like the others: The state of anomaly

detection. http://www.securityfocus.com/infocus/1600 (2002)

. Denning, D.: An Intrusion-Detection Model. In: Proceedings of the IEEE Sympo-

sium on Security and Privacy, IEEE Computer Society Press (1986)

Deri, L., Suin, S., Maselli, G.: Design and implementation of an anomaly detection
system: An empirical approach. In: Proceedings of Terena TNC. (2003)
Basseville, M.: A discussion on ‘Detection of intrusions in information systems
by sequential change-point methods’ by Tartakovsky, Rozovskii, Blazek, and Kim.
Journal on Statistical Methodology 3 (2006)

Kim, S.S., Reddy, A.L.N.: Image-based anomaly detection technique: Algorithm,

implementation and effectiveness. Journal on Selected Areas in Communications
24(10) (2006)

Verbowski, C., Kiciman, E., Daniels, B., Kumar, A., Wang, Y.M., Roussev, R.,
Lu, S., JuhanLee: Flight data recorder: Always-on tracing and scalable analysis
of persistent state interactions to improve systems and security management. In:

Proceedings of the Seventh Symposium on Operating Systems Design and Imple-
mentation (OSDI). (2006) 117 - 130

Shavlik, J., Shavlik, M.: Selection, combination, and evaluation of effective software
sensors for detecting abnormal computer usage. In: Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery and data mining. (2004)
276-285

Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu,
A.Y.: The analysis of a simple k-means clustering algorithm. In: Symposium on
Computational Geometry. (2000) 100-109

Witten, 1., Frank, E., Trigg, L., Hall, M., Holmes, G., Cunningham, S.: Weka:
Practical machine learning tools and techniques with java implementations. In:
Proceedings of ICONIP/ANZIIS/ANNES’99 Int. Workshop: Emerging Knowledge
Engineering and Connectionist-Based Information Systems. (1999) 192-196
Hochbaum, Shmoys: A best possible heuristic for the k-center problem. Mathe-
matics of Operations Research 10(2) (1985) 180-184

Dasgupta, S.: Performance guarantees for hierarchical clustering. In: 15th Annual
Conference on Computational Learning Theory. (2002) 351-363

Web-Page:  Privacy and Security (BS7799, ISO 17799, Computer Forensic).
www.netlitigation.com/netlitigation/privacy.htm (2007)

Web-Page: Application Statistics - MugShot. http://mugshot.org/applications-
learnmore (2007)

Michell, F.: Introduction to turtlekit: A platform for building logo based multi-
agent simulations with madkit. Technical Report RR LIRMM 02215, Laboratoire
d’Informatique, de Robotique et de Microélectronique de Montpellier, Université
Montpellier II (2002)

Blickle, T., Thiele, L.: A comparison of selection schemes used in genetic algo-
rithms. Technical Report 11, Computer Engineering and Communication Networks
Lab (TIK), Swiss Federal Institute of Technology (ETH) Zurich (1995)

Mierswa, 1., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: Yale: Rapid proto-
typing for complex data mining tasks. In: Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD-06),
Springer (2006)

Garcia-Osorio, C., Maudes, J., Fyfe, C.: Using andrews curves for clustering and
sub-clustering self-organizing maps. In: Proceedings of the European Symposium
on Artificial Neural Networks - ESANN2004. (2004) 477 - 482



